Synthesis and structural characterization of enantiopure exo and endo six-membered oxazoline-derived palladacycles

Relindis Y. Mawo, Diane M. Johnson, Jessica L. Wood, Irina P. Smoliakova *
Department of Chemistry, 151 Cornell Street, University of North Dakota, Grand Forks, ND 58202-9024, USA

Received 20 September 2007; received in revised form 5 October 2007; accepted 6 October 2007
Available online 12 October 2007

Abstract

Direct palladation of (S)-4-benzyl-2-methyl-2-oxazoline (1) and (S)-2-benzyl-4-tert-butyl-2-oxazoline (2) using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in MeCN afforded the corresponding μ-acetato-dimeric complexes with six-membered exo and endo palladacycles, respectively. The same complexes were obtained by reacting coordination complexes $\mathrm{Pd}(\mathbf{1})_{2}(\mathrm{OAc})_{2}$ and $\operatorname{Pd}(\mathbf{2})_{2}(\mathrm{OAc})_{2}$ with $\operatorname{Pd}(\mathrm{OAc})_{2}$ in MeCN. Metalation of (S)-2,4-dibenzyl-2-oxazoline (3) with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in $\mathrm{AcOH}, \mathrm{MeCN}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the regiospecific formation of the six-membered endo palladacycle. The obtained μ-acetato-dimeric complexes were converted to the corresponding μ-chloro-dimeric derivatives $\mathbf{7 , 1 1}$ and $\mathbf{1 3}$ by treatment with LiCl in acetone. The mononuclear PPh_{3} adducts $\mathbf{8}, \mathbf{1 2}$ and $\mathbf{1 4}$ were obtained by reacting dimers $\mathbf{7}, \mathbf{1 1}$ and $\mathbf{1 3}$ with PPh_{3} in benzene. NMR spectroscopy data supported the proposed structures of all complexes and suggested that exo and endo palladacycles in $\mathbf{8}$ and $\mathbf{1 2}$ have rigid boat conformations in CHCl_{3}. The X-ray crystal structures of the μ-acetato dimer $\mathbf{6}$ with the exo palladacycle and the PPh_{3} adduct 14 with the endo metalacycle revealed boat conformation of both palladacycles and chiral twisted conformations $\delta(S)$ and $\lambda(S)$, respectively, of the oxazoline rings in the solid state. © 2007 Elsevier B.V. All rights reserved.

Keywords: Cyclopalladated complexes; Oxazolines; endo and exo palladacycles; Six-membered palladacycle

1. Introduction

After the discovery of cyclopalladation by Cope and Siekman in 1965 [1], it was believed that this reaction could afford only five-membered metalacycles. By now, palladacycles of different sizes have been reported, including six-membered cycles [2]. The most common six-membered palladacycles belong to the CN type and are derivatives of the following N-containing compounds: amidines (A) [3], 2-substituted pyridines (B [4-12], C [13,14] and D [15]), amines (\mathbf{E} [16-18], \mathbf{F} [16] and \mathbf{G} [19]), azo compounds $(\mathbf{H}, \mathbf{X}=\mathbf{N})$ [20], azines $(\mathbf{I}[21])$, imines $[\mathbf{H}(X=\mathbf{C H})$ [22], \mathbf{I} [23-30], $\mathbf{J}[31,32]$ and $\mathbf{K}[33-35])$ and oxazolines ($\mathbf{L}[36]$, \mathbf{M} [37], \mathbf{N} [38] and \mathbf{O} [39], Chart 1). CP [40] and CS [19,41] palladacycles of this size have also been obtained. Nevertheless, six-membered palladacycles are still consid-

[^0]ered uncommon. While compounds with five-membered palladacycles have numerous applications, especially in enantioselective catalysis, cyclopalladated complexes with the larger size metalacycles have found few uses [2]. Complexes with six-membered palladacycles have been tested as achiral $[12,30,40,42-45]$ or chiral [37] catalysts [12,30,37,40,42-45] and as intermediates for the synthesis of biologically active molecules [46]. The limited number of application studies for the palladacycles of this size can be explained by the fact that, to the best of our knowledge, only four of them are chiral [37-39,46].

One of the common ways to introduce chirality to metal complexes is the use of ligands that can be readily synthesized from commercially available enantiopure substrates. Metal complexes of unsymmetrically substituted 2-oxazolines obtained from chiral amino acids and their derivatives have found a variety of applications, particularly in asymmetric synthesis [47]. Recently, a number of C^{*}-chiral enantiopure exo [48-50], endo [48,50-62] and pincer-type

A
$\mathrm{R}=\mathrm{H}$ or Me (ref. 3)

B
$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{H}$ (ref. 4 and 5) $\mathrm{X}=\mathrm{CHMe}, \mathrm{R}=2-\mathrm{Py}$ (ref. 6) $\mathrm{X}=\mathrm{C}=\mathrm{O}, \mathrm{R}=\mathrm{H}$ (ref. 7 and 8) $X=N H, R=H$ (ref. 9) $\mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{H}($ ref. 10-12) $X=S, R=H$ (ref. 10)

E
$\mathrm{R}^{1}{ }_{2}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}, \mathrm{R}^{2}=\mathrm{H}$ (ref. 16)
$\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$ or OMe (ref. 17 and 18)

F
$R^{1}=R^{2}=R^{3}=M e$
$\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{R}^{3}=\mathrm{Bn}$
(ref. 16)

G
(ref. 19)

D (ref.15)
$\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$ (ref. 14)

H
$\mathrm{X}=\mathrm{N}, \mathrm{R}=\mathrm{Me}$ (ref. 20)
$\mathrm{X}=\mathrm{CH}, \mathrm{R}=\mathrm{H}$ (ref. 22)

L
(ref. 36)
$\mathrm{R}=\mathrm{N}=\mathrm{CH}-2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (ref. 21)
$\mathrm{R}=\mathrm{Ph}$ (ref. 23, 24, 27 and 29)
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$ (ref. 23-25)
$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$ (ref. 23)
$\mathrm{R}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (ref. 26)
$\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ (ref. 28 and 30)
$\mathrm{R}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (ref. 29)
$R=2,6-\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}$ (ref. 30)

$\mathrm{R}=2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ (ref. 31)
$R=2,6-F_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ (ref. 31)
$\mathrm{R}=2,4,6-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (ref. 31)
$\mathrm{R}=\mathrm{Fc}$ (ref. 32)

K
$\mathrm{R}=\mathrm{H}$ (ref. 33)
$\mathrm{R}=\mathrm{H}$ (ref. 33)
$\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$ (ref. 34)

M (ref. 37)

N (ref. 38)

0 (ref. 39)

Chart 1. Examples of known six-membered palladacycles.
[58,63-70] cyclopalladated oxazolines with a five-membered metalacycle have been reported (Chart 2). Other cyclopalladated oxazolines with planar and central chirality have also been studied [38,71-80]. It has also been shown that the formation of five-membered oxazolinederived metalacycles complies with the endo rule: the preference of endo palladation over exo [48,50]. Two of the four known oxazoline-based six-membered palladacycles (Chart $1, \mathbf{L}$ and \mathbf{N}) were obtained by activation of either the indol's or benzylic $\mathrm{C}-\mathrm{H}$ bond using $\operatorname{Pd}(\mathrm{OAc})_{2}$. The metalacycle \mathbf{M} was obtained by oxidative addition of the corresponding bromine-containing preligand to $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$. The fourth known six-membered palladacycle bearing the oxazolinyl moiety, \mathbf{O}, is a part of the carbene-derived asymmetrical pincer complex and was synthesized by
transmetalation [39]. These four palladacycles belong to the endo type. The goals of the present study were preparation of the first example of an oxazoline-derived six-membered exo palladacycle and expanding the number of known enantiopure six-membered endo metalacycles by using direct palladation of oxazolines. We have also investigated whether the endo rule holds for the formation of six-membered palladacycles.

2. Results and discussion

Oxazoline 1 was prepared from commercially available (S)-phenylalaninol and ethylacetimidate hydrochloride in 65% yield using a known procedure (Scheme 1) [81]. Ligands $\mathbf{2}$ and $\mathbf{3}$ were synthesized in 79% and 84% yield,

\mathbf{P}, endo palladacycles with the $\left(\mathrm{sp}^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond $R^{1}, R^{2}=H$, Alk or Ph $\mathrm{R}^{3}=\mathrm{H}, \mathrm{OMe}, \mathrm{Me}$ or $n-\mathrm{Bu}$

Acetic acid is the most common solvent for direct cyclopalladation of different substrates, including oxazolines, using $\mathrm{Pd}(\mathrm{OAc})_{2}[50,83]$. Surprisingly, our attempts of the direct cyclopalladation of $\mathbf{1}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in glacial acetic acid at $76^{\circ} \mathrm{C}$ for $2-24 \mathrm{~h}$ were not successful. Under these conditions, only traces of the desirable cyclopalladated complex (6) were detected and the corresponding coordination complex (4) was isolated in a high yield. However, the reaction proceeded efficiently in acetonitrile to provide the μ-acetato dimer 6 in 89% yield (Scheme 3). Compound 6 was also obtained in 86% yield from the coordination complex 4 by reacting with 1 equiv. of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetonitrile at $76-82^{\circ} \mathrm{C}$ for 1 h . Conversions of coordination complexes $\mathrm{Pd}(\mathrm{HL})_{2} \mathrm{X}_{2}$ to the corresponding cyclopalladated derivatives $(\mathrm{PdLX})_{2}$ either by using $\operatorname{Pd}(\mathrm{OAc})_{2}$ in MeCN [17,18] or by dissolving the complex in a polar solvent [84] have been known previously. However, such transformations have never been reported for other oxazolines, and our attempts to carry out the same reactions for 2-phenyloxazoline, 2,4-diphenyl-2-oxazoline and other similar preligands to form five-membered palladacycles failed.

Ligand metathesis of $\mathbf{6}$ with 2 equiv. of LiCl in acetone afforded the μ-chloro dimer 7 in 89% yield. The μ-chloro dimer 7 was converted quantitatively to the mononuclear PPh_{3} adduct 8 upon reaction with 2 equiv. of PPh_{3} in benzene. The 6-membered exo-cyclic complexes 6-8 are all stable to heat, air and moisture in the solid state. However, complex 7 proves to be much less stable in solution than 6 and 8 , as it degrades over time in common solvents at room temperature.

Oxazoline 2 reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetonitrile to produce the μ-acetato cyclopalladated complex, which was converted in situ to the μ-chloro analog 11 using LiCl with an overall yield of 60% (Scheme 4). Contrary to our findings for oxazoline 1, the cyclopalladation of $\mathbf{2}$ also proceeded successfully in acetic acid at $76-80^{\circ} \mathrm{C}$, giving complex $\mathbf{1 1}$ in 83% yield upon reaction of the μ-acetato dimer with LiCl . After treatment of a benzene solution of 11 with 2 equiv. of PPh_{3}, the mononuclear complex $\mathbf{1 2}$ was obtained in 85% yield (Scheme 4).

Oxazoline 3 has two different kinds of $\left(\mathrm{sp}^{2}\right) \mathrm{C}-\mathrm{H}$ bonds that are susceptible to palladation. Thus, the cyclopalladation reaction of $\mathbf{3}$ could produce a six-membered endo and/ or exo palladacycle, via the activation of the ortho $\left(\mathrm{sp}^{2}\right) \mathrm{C}-$ H of the 2-and/or 4-benzyl substituent on the oxazoline ring, respectively. The cyclopalladation of $\mathbf{3}$ took place regiospecifically in acetic acid, acetonitrile and dichloromethane (Scheme 5) to produce only one endo isomer as indicated by the presence of only one set of signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of both the crude and pure cyclopalladated product $\mathbf{1 3}$. Complex 13 was converted to the corresponding mononuclear derivative $\mathbf{1 4}$ containing PPh_{3} as an auxiliary ligand (Scheme 5).

3. Spectral characterization of complexes

Oxazolines 1-3 and complexes 4-13 were characterized by IR and NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and $\left.{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ spectroscopy;

Scheme 3.

Scheme 4.
the signal assignment in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra was done using 1D NOE, DEPT and HSQC experiments. The IR data confirmed the presence of the N-Pd bond in the coordination and cyclopalladated complexes. In the spectra of compounds $5-\mathbf{8}$ and $\mathbf{1 0}-\mathbf{1 4}$, the signals of the $\mathrm{C}=\mathrm{N}$ bond vibrations were shifted to lower wavenumbers compared to those of free oxazolines $(\Delta \lambda=$ $5-27 \mathrm{~cm}^{-1}$). These values are within the range of those reported for other oxazoline-derived $\mathrm{Pd}(\mathrm{II})$ complexes [48,50,54].

The ${ }^{1} \mathrm{H}$ NMR spectra of the cyclopalladated dimers 6,7, $\mathbf{1 1}$, and $\mathbf{1 3}$ are fully consistent with ortho-metalation of the phenyl ring. The 5 H or 10 H multiplets assigned to the aromatic protons in the spectra of free oxazolines $\mathbf{1}-\mathbf{3}$ were replaced by 4 H or 9 H multiplets in the spectra of the dimeric complexes 6, 7, 11, and 13. According to the DEPT and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, one of the aromatic CH groups in oxazoline 2 was replaced with a quaternary aromatic carbon in the respective cyclopalladated complexes $\mathbf{1 1}$ and 12. PPh_{3} adducts $\mathbf{8}, \mathbf{1 2}$ and $\mathbf{1 4}$ exist in solution as single

Scheme 5.
isomers, as indicated by the presence of only one signal at $\delta 32.54,34.41$ and 33.52 ppm , respectively, in their ${ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and one set of signals in their ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. The chemical shift values of the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals are consistent with those reported for trans- P, N adducts $[48,50]$.

The OCH_{2} protons of 4 -monosubstituted oxazoline rings are diastereotopic. Consequently, each of the three hydrogens of the oxazoline ring displayed a separate signal in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 - 1 4}$. The assignment of these signals was done by analyzing ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, DEPT and HMQC spectra. 1D NOE experiments were carried out to differentiate between the diastereotopic OCH_{2} protons. The results of these experiments for complex $\mathbf{8}$ are presented in Fig. 1.

Coupling constant values in the ${ }^{1} \mathrm{H}$ NMR spectra of the heterocycles $\mathbf{1 - 3}$ and complexes $\mathbf{4}-\mathbf{1 4}$ in CDCl_{3} can be used to determine the oxazoline ring conformation in these compounds. The values of the torsion angles $\mathrm{H}^{S}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ and $\mathrm{H}^{R}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ were estimated using the computer program MestRe-J, which calculates the torsion angles applying the Haasnoot-de Leeuw-Altona equation [85]. Using the coupling constants ${ }^{3} J_{\mathrm{OCH}^{s}, \mathrm{NCH}}=8.9$ and ${ }^{3} J_{\mathrm{OCH}^{R} \mathrm{NCH}}=7.4$ for free oxazoline $\mathbf{1}$, values of 16° and 135° were obtained for the $\mathrm{H}^{S}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ and $\mathrm{H}^{R}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ torsion angles, respectively. This suggests a slightly twisted $\delta(S)$ conformation for the
oxazoline ring in preligand 1 (Fig. 2). The same twisted $\delta(S)$ solution conformation is predicted for the heterocycle in 2. The oxazoline ring conformation in complexes with the endo palladacycle $\mathbf{1 1}$ and $\mathbf{1 2}$ in solution can be considered achiral, with no twist to either direction.

According to the reported X-ray data for six-membered palladacycles, they usually adopt a boat conformation in the solid state (palladacycles B, C, E, F, L and M, Chart 1) $[6,10,14,16,17,33,86]$, although palladacycles of type \mathbf{I} have a half-skew chair conformation $[23,24,27,28,30]$. Consideration of molecular models of mononuclear cyclopalladated complexes $\mathbf{8}, \mathbf{1 2}$ and $\mathbf{1 4}$ suggests boat conformations A and/or B (Fig. 3). The rigidity of the palladacycles was checked by variable temperature (-60 to $+60^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR experiments using the mononuclear complexes 8 and $\mathbf{1 2}$ in CDCl_{3}. Minor changes in the multiplicities and resonance frequencies of the benzylic protons in the spectra of $\mathbf{8}$ and $\mathbf{1 2}$ over the studied temperature range suggested that both the exo and endo palladacycles in these complexes have a rigid conformation in solution. In order to determine the conformation of the exo palladacycle in

$\lambda(S)$

$\delta(S)$

Fig. 2. Two possible chiral twisted $[\delta(S)$ and $\lambda(S)$] conformations [48] of the oxazoline ring in (S)-2,4-disubstituted oxazolines.

A

B

Fig. 3. Possible boat conformations of the exo palladacycle in complexes 6-8.
a

b

Fig. 1. Results of the 1D NOE experiments for complex 8: (a) irradiation of the NCH signal; (b) irradiation of the $\operatorname{ArCH}{ }^{R}$ signal.
compound 8, 1D NOE studies were carried out (Fig. 1). The observed NOE data are consistent with conformation B (Fig. 3). Unfortunately, it was impossible to determine the endo palladacycle's conformation in complexes 11-14 using NMR spectroscopy.

4. X-ray structural analysis of complexes 6 and 14

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the crude and purified product in the reaction of oxazoline 3 with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Scheme 5) contain only one set of signals. This suggests complete regioselectivity of the reaction under the used conditions. However, NMR data did not allow differentiation between two possible palladacycles in complex 13 and its derivative 14. The endo structure of the palladacycle in compound 14 was unambiguously confirmed by the single crystal X-ray diffraction study. The molecular structure of complex 14 with the endo palladacycle is presented in Fig. 4. The crystal structure of complex 6 with the six-membered exo palladacycle was also determined; a picture of it is shown in Fig. 5. As expected, the coordination geometry around the palladium atom in both structures $\mathbf{6}$ and $\mathbf{1 4}$ is approximately square-planar.

X-ray structures have been reported for two oxazolinederived complexes with six-membered palladacycles: the acetato PPh_{3} adduct with palladacycle \mathbf{L} and the μ-bromodimer with palladacycle \mathbf{M} (Chart 1). The palladacycles in both complexes are endo, with the oxazoline $\mathrm{C}=\mathrm{N}$ moiety within the metal-containing ring. Overall, structural features of complex 14 are similar to those reported for complexes \mathbf{L} and \mathbf{M}. For example, the $\mathrm{Pd}-\mathrm{C}$ bond lengths in palladacycles L, M and $\mathbf{1 4}$ equal $1.995(3), 1.997(9)$ and $1.996(3) \AA$, respectively. These values are within the range reported for
oxazoline-derived five-membered endo metalacycles (1.992$2.052 \AA$) [$38,48,53,54]$. The $\mathrm{Pd}-\mathrm{N}$ bond lengths in \mathbf{L}, \mathbf{M} and $\mathbf{1 4}$ are $2.079(3), 2.079(3)$ and $2.067(3) \AA$, respectively. These values are lower than that known for the iminederived six-membered C, N-palladacycle $\mathbf{I}(\mathrm{R}=\mathrm{Ph}$, Chart 1 ; $2.138 \AA$),[24] but slightly higher than those reported for oxazoline-based five-membered endo palladacycles, 2.012-2.072 $\AA[38,48,53-55]$. The lengths of the $\mathrm{C}=\mathrm{N}$ bonds in three palladacycles \mathbf{L}, \mathbf{M} and $\mathbf{1 4}$ are $1.266,1.203$ and $1.276 \AA$, respectively. They are slightly lower than the values found for oxazoline-based five-membered endo palladacycles, $1.265-1.307 \AA[38,48,53-55]$ and imine-derived fivemembered exo derivatives, $1.253-1.321 \AA$ A.[33] The torsion angles $\mathrm{C}-\mathrm{Pd}-\mathrm{N}$ in the palladacycles \mathbf{L}, \mathbf{M} and $\mathbf{1 4}$ are similar to one another $\left(87.95,85.73\right.$ and $\left.86.36^{\circ}\right)$, but quite different from those found in oxazoline-derived five-membered endo palladacycles (78.57-80.87$) ~[38,48,53-55] . ~$

All three endo palladacycles \mathbf{L}, \mathbf{M} and $\mathbf{1 4}$ have the boat conformation (Fig. 4). The oxazoline ring in complex 14 adopts the chiral twisted conformation $\lambda(S)$ with a torsion angle $\mathrm{H}^{S}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ of 14.78° (see Fig. 2). For comparison, the oxazoline ring's conformation in \mathbf{M} can be described as $\delta(S)$ with a torsion angle $\mathrm{H}^{S}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ of 9.21°; the oxazoline ring in \mathbf{L} is almost planar.

Complexes 6, 7 and $\mathbf{8}$ are the first representatives of cyclometalated oxazolines with a six-membered exo palladacycle. Therefore, structural parameters of complex $\mathbf{6}$ will be compared with the six-membered endo palladacycles \mathbf{L}, \mathbf{M} and 14, as well as with a few known X-ray data for cyclopalladated imines containing exo metalacycles of the same size. The $\mathrm{Pd}-\mathrm{C}$ and $\mathrm{Pd}-\mathrm{N}$ bond lengths found in dimeric 6 are 1.973 and $2.026 \AA$, respectively. These values are in good agreement with the data reported for other

Fig. 4. Molecular structure of compound $\mathbf{1 4}$ drawn at 50% probability ellipsoids.

Fig. 5. Molecular structure of compound 6 drawn at 50% probability ellipsoids.
oxazoline-based palladacycles of different types. The length of the $\mathrm{C}=\mathrm{N}$ bond in $\mathbf{6}(1.306 \AA)$ is slightly longer than that found in the endo palladacycles \mathbf{L}, \mathbf{M} and 14 (1.203$1.276 \AA$) and comparable to that in five-membered exo palladacycles (1.253-1.321 Å) [33].

Both palladacycles in complex 6 adopt the boat conformation as do other six-membered oxazoline-based derivatives. It is interesting that one palladacycle in dimer 6 has boat conformation A, while the other adopts conformation B (Fig. 3). The solid state conformation of the two oxazoline rings in compound $\mathbf{6}$ can be described as $\delta(S)$ with torsion angles $\mathrm{H}^{S}-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{N})-\mathrm{H}$ of 22.75° and 28.62°.

The X-ray crystal structure of dimer 6 revealed its anti configuration. The same geometry was found in the X-ray structures of other oxazoline-derived μ-acetato dimers with five-membered palladacycles [55,60]. As with other μ-acetato dimeric complexes, compound 6 has a so-called open-book geometry $[48,60]$ with a rather short $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ distance $(3.044 \AA)$. For comparison, the non-bonding $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ distance in μ-acetato dimer \mathbf{P}, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$, is $3.160 \AA$ [55].

5. Conclusions

We have shown that six-membered exo and endo palladacycles can be synthesized successfully in good to excellent yields by direct palladation of oxazolines with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetonitrile and by reacting the corresponding coordination complexes with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the same solvent. Complexes $\mathbf{6}-\mathbf{8}$ represent the first examples of oxazoline-based six-membered exo palladacycles. The regiospecific cyclopalladation of $\mathbf{3}$ has demonstrated that the formation of six-membered oxazoline-derived palladacycles follows the endo rule.

6. Experimental

6.1. General methods and materials

All reactions were performed using standard bench top procedures with no special precautions to eliminate air. Purifications by column chromatography and preparative thin layer chromatography (TLC) were carried out using Natland silica gel 60 (230-400 mesh). Analytical TLC was performed on Whatman silica gel $60\left(\mathrm{~F}_{254}\right) 250 \mu \mathrm{~m}$ pre-coated plates. Compounds were visualized on TLC plates using UV light (254 nm) and iodine stain. Routine ${ }^{1} \mathrm{H} \quad(500 \mathrm{MHz}), \quad{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad(126 \mathrm{MHz})$, and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz), as well as DEPT, COSY, and HSQC spectra were recorded in CDCl_{3} using a Bruker AVANCE 500 spectrometer. Chemical shifts are reported in ppm relative to SiMe_{4} as the internal standard (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) or $\mathrm{P}(\mathrm{OEt})_{3}$ as the external reference $\left({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$. Spin-spin coupling constants, J, are given in Hz. IR spectra were recorded on an ATI Mattson Genesis Series FT-IR. Melting points were determined on a Laboratory Devices MelTemp apparatus and are uncorrected. Optical rotations were measured in a 1 dm cell using an Autopol III automatic polarimeter. Elemental analyses were performed by Atlantic MicroLabs Inc., Norcross, GA. Benzene was refluxed over $\mathrm{K} /$ benzophenone ketyl, distilled under N_{2} and kept over $3 \AA$ molecular sieves. Acetone was distilled over KMnO_{4}, followed by distillation over anhydrous CaSO_{4}. Other solvents were dried by distillation over CaH_{2}. Prior to use, $\mathrm{Pd}(\mathrm{OAc})_{2}$ was dissolved in hot benzene, followed by filtration and solvent removal in vacuo. All other chemicals were used as purchased from commercial sources (Sigma-Aldrich or Acros Organics).

6.2. (S)-4-Benzyl-2-methyl-2-oxazoline (1)

A solution of L-phenylalaninol ($1.5828 \mathrm{~g}, 0.10468 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added drop-wise to a pre-cooled $\left(0^{\circ} \mathrm{C}\right.$, bath temp.) suspension of ethylacetimidate hydrochloride ($0.1924 \mathrm{~g}, 0.01557 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The resulting milky-white reaction mixture was stirred under N_{2} at rt for 24 h and then diluted with water $(150 \mathrm{~mL})$. The organic layer was removed, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were dried over anhydrous NaSO_{4}. The drying agent was removed by filtration, the solvent was evaporated, and the crude product was distilled in vacuo, to afford $1.2001 \mathrm{~g}(65 \%)$ of the pure product as a colorless oil. Bp $120-123{ }^{\circ} \mathrm{C}$ at 6 mm Hg [lit.[87] $\left(63-65^{\circ} \mathrm{C}\right.$ at $0.12 \mathrm{~mm} \mathrm{Hg})$]; $R_{\mathrm{f}} 0.27$ (1:2 pet. ether-EtOAc); IR (thin film of CDCl_{3} soln, $\left.v, \mathrm{~cm}^{-1}\right): 1674(\mathrm{C}=\mathrm{N}) ;[\alpha]_{\mathrm{D}}^{24}-63.3^{\circ}(c$ 1.71, MeOH) [lit.[88] [$\alpha]_{\mathrm{D}}^{23}-47.9^{\circ}(c 1.70, \mathrm{MeOH})$; lit.[87] $[\alpha]_{\mathrm{D}}^{25}-49.3^{\circ}\left(c 2.83, \mathrm{CHCl}_{3}\right)$; lit. [89] [$\left.\alpha\right]_{\mathrm{D}}^{25}-50.7^{\circ}$ (c 2.83, CHCl_{3})]; ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 1.97$ (br. d, $3 \mathrm{H},{ }^{5} J_{\mathrm{HH}}=1.2$, $\mathrm{Me}), 2.64\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{s}}=13.8,{ }^{3} J_{\mathrm{PhCH}^{R}, \mathrm{NCH}^{2}}=8.5\right.$, $\left.\mathrm{PhCH} H^{R}\right), 3.08\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{s}, \mathrm{NCH}}=5.4, \mathrm{PhC} H^{S}\right), 3.93$ (dd, $1 \mathrm{H}, \quad{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{S}}=8.4, \quad{ }^{3} J_{\mathrm{OCH}^{R}, \mathrm{NCH}}=7.4, \quad \mathrm{OCH}^{R}$),
$4.17\left(\mathrm{t},{ }^{3} J_{\mathrm{OCH}^{s}, \mathrm{NCH}}=8.9 \mathrm{OCH}^{S}\right), 4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 7.19-7.24 (m, 3H, o- and p-CH arom.), 7.26-7.31 (m, 2H, m-CH arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm}): 14.0(\mathrm{Me}), 41.6$ $\left(\mathrm{PhCH}_{2}\right), 67.4(\mathrm{NCH}), 71.8\left(\mathrm{OCH}_{2}\right), 126.5(p-\mathrm{CH}$ arom.), 128.5 ($m-\mathrm{CH}$ arom.), 129.2 (o-CH arom.), 138.0 (ipso-C arom.), 165.1 (OCN).

6.3. (S)-2-Benzyl-4-tert-butyl-2-oxazoline (2)

$\mathrm{Cd}(\mathrm{OAc})_{2}(0.1532 \mathrm{~g}, 0.5748 \mathrm{mmol})$ and phenylacetonitrile $(1.3 \mathrm{~mL}, 0.011 \mathrm{~mol})$ were added to a solution of (S)-tert-leucinol ($1.3331 \mathrm{~g}, 11.380 \mathrm{mmol}$) in chlorobenzene $(43 \mathrm{~mL})$. The mixture was refluxed under N_{2} for 5 days. The solvent was evaporated, and the residue was dissolved in petroleum ether and filtered through celite. After solvent evaporation, the crude product was further purified by vacuum distillation to obtain $1.9222 \mathrm{~g}(79 \%)$ of $\mathbf{2}$ as a colorless oil. Bp $90-95^{\circ} \mathrm{C} / 0.07 \mathrm{~mm} \mathrm{Hg} ; R_{\mathrm{f}} 0.57$ (1:2 pet. etherEtOAc); IR (thin film of CDCl_{3} soln, $v, \mathrm{~cm}^{-1}$): 1670 $(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{22}-61.0^{\circ},[\alpha]_{\mathrm{D}}^{22}-70.0^{\circ},[\alpha]_{546}^{22}-83.4^{\circ}, \quad[\alpha]_{435}^{22}$ $-143^{\circ},[\alpha]_{365}^{22}-253^{\circ}\left(c \quad 0.264, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, $\mathrm{ppm}): 0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 3.62$ and 3.66 (two d, 2 H , $\left.{ }^{2} J=19.5, \quad \mathrm{PhCH}_{2}\right), \quad 3.85 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad{ }^{3} J_{\mathrm{OCH}^{s}, \mathrm{NCH}}=10.0\right.$, $\left.{ }^{3} J_{\mathrm{OCH}_{R}^{R} \mathrm{NCH}}=8.0, \mathrm{NCH}\right), 4.01\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{s}}=8.7\right.$, $\left.\mathrm{OCH}^{R}\right), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{OCH}^{S}\right), 7.23-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 25.0 \quad\left[\left(\mathrm{CMe}_{3}\right), 33.6\right.$ [CMe_{3}], $34.9\left(\mathrm{PhCH}_{2}\right), 68.9\left(\mathrm{OCH}_{2}\right), 75.7(\mathrm{NCH}), 126.9$ ($p-\mathrm{CH}$ arom.), 128.5 ($m-\mathrm{CH}$ arom.), 128.9 ($o-\mathrm{CH}$ arom.), 135.4 (ipso-C arom.), 165.8 (OCN). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 77.38 ; \mathrm{H}, 8.81$; $\mathrm{N}, 6.45$. Found: C, 76.78; H, 8.67; N, 6.50\%.

6.4. (S)-2,4-Dibenzyl-2-oxazoline (3)

Compound 3 was synthesized using the same procedure as for 2. The yield of $\mathbf{3}$ from $0.92 \mathrm{~mL}(8.0 \mathrm{mmol})$ of phenylacetonitrile and $1.21 \mathrm{~g}(7.97 \mathrm{mmol})$ of L -phenylalaninol after 4 days of reflux and purification by vacuum distillation was $1.59 \mathrm{~g}(84 \%)$. IR (neat, $\left.v, \mathrm{~cm}^{-1}\right)$: $1665(\mathrm{C}=\mathrm{N})$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are identical to those reported previously [90].

6.5. (S,S)-Diacetatobis-(4-benzyl-2-methyl-2-oxazoline)palladium (II) (4)

(S)-4-Benzyl-2-methyl-2-oxazoline ($156.2 \mathrm{mg}, 0.8914 \mathrm{mmol}$) was dissolved in acetone $(7.0 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(100.1 \mathrm{mg}$, 0.4459 mmol) was added to the stirred solution at rt . After 1.5 h , the solvent was evaporated. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-petroleum ether to give 4 $(242.4 \mathrm{mg}, 95 \%)$ as yellow crystals. M.p. $123-124{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ 0.29 (95:5 EtOAc-MeOH); IR (thin film of CDCl_{3} soln, v, $\left.\mathrm{cm}^{-1}\right): 1666,1651,1624$, and $1601(\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{ppm}): 1.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.80$ $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=13.7,{ }^{3} J_{\mathrm{PhCH}^{R}, \mathrm{NCH}}=10.4, \mathrm{PhCH}^{R}\right), 4.03(\mathrm{t}$, $\left.1 \mathrm{H}, J=8.3, \mathrm{OCH}^{R}\right), 4.14\left(\mathrm{t}, J=9.2, \mathrm{OCH}^{S}\right), 4.21(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCH}), 4.35\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{S}, \mathrm{NCH}}=3.7, \mathrm{PhCH}^{S}\right)$,
7.14-7.27 (m, 5H, CH arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ, ppm): $15.0(\mathrm{Me}), 22.8\left(\mathrm{MeCO}_{2}\right), 41.0\left(\mathrm{PhCH}_{2}\right), 66.0(\mathrm{NCH})$, $72.5\left(\mathrm{OCH}_{2}\right), 126.7$ ($p-\mathrm{CH}$ arom.), 128.8 ($m-\mathrm{CH}$ arom.), 129.3 (o-CH arom.), 137.0 (ipso-C arom.), 170.7 (OCN), $177.6(\mathrm{C}=\mathrm{O})$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OPd}$: C, 54.31 ; H , 5.61; N, 4.87. Found: C, 54.57; H, 5.63; N, 4.98\%.
6.6. (S, S)-Dichlorobis-(4-benzyl-2-methyl-2-oxazoline)palladium (II) (5)

A solution of (S)-4-benzyl-2-methyl-2-oxazoline (54.8 mg , $0.313 \mathrm{mmol})$ in acetone $(2.0 \mathrm{~mL})$ was added to a suspension of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ ($46.7 \mathrm{mg}, 0.159 \mathrm{mmol}$). The mixture was stirred under N_{2} at rt for 2 h . The solvent was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. Concentration of the filtrate, followed by addition of pentane, led to precipitation of the product as a yellow powder. Further purification by column chromatography, with benzene as the eluent, resulted in the isolation of $66.7 \mathrm{mg}(81 \%)$ of the pure product. M.p. $133-$ $134{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.75$ (1:1 toluene-EtOAc); IR (thin film of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln, $\left.v, \mathrm{~cm}^{-1}\right): 1665(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{22}+157^{\circ},[\alpha]_{\mathrm{D}}^{22}$ $+192^{\circ}$, $[\alpha]_{546}^{22} 241^{\circ}\left(c 0.200, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm})$: $2.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.85\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{s}}=13.8\right.$, $\left.{ }^{3} J_{\mathrm{PhCH}^{R}, \mathrm{NCH}}=10.7, \mathrm{PhCH} H^{R}\right), 4.09\left(\mathrm{t}, 1 \mathrm{H}, J=8.6, \mathrm{OCH}^{R}\right)$, $4.23\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{S}, \mathrm{NCH}}=4.3, \mathrm{PhC} H^{S}\right), 4.28(\mathrm{t}, J=9.4$, $\left.\mathrm{OCH}^{S}\right), 4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 7.22-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta, \mathrm{ppm}): 16.0(\mathrm{Me}), 41.3\left(\mathrm{PhCH}_{2}\right), 66.0$ $(\mathrm{NCH}), 72.9\left(\mathrm{OCH}_{2}\right), 127.0(p-\mathrm{CH}$ arom. $), 128.9(m-\mathrm{CH}$ arom.), 129.2 (o-CH arom.), 136.4 (ipso-C arom.), 170.3 (OCN). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OPd}$: $\mathrm{C}, 50.07 ; \mathrm{H}$, 4.97; N, 5.31. Found: C, 50.58; H, 4.94; N, 5.22\%.
6.7. (S,S)-Di- μ-acetatobis-\{2-[2-(2-methyl)oxazolin-4-yl]-methylphenyl-C, N\} dipalladium (II) (6)

Method A. A mixture of (S)-4-benzyl-2-methyl-2-oxazoline $1(54.2 \mathrm{mg}, \quad 0.309 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(71.2 \mathrm{mg}$, 0.317 mmol) in acetonitrile $(5.0 \mathrm{~mL})$ was refluxed for 3.5 h . The mixture was allowed to cool to rt and filtered through celite. The solvent was evaporated, and the crude product was recrystallized from bezene-petroleum ether to obtain $93.4 \mathrm{mg}(89 \%)$ of 6. Method B. $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(25.3 \mathrm{mg}, 0.113 \mathrm{mmol})$ was added to an acetonitrile solution $(5.0 \mathrm{~mL})$ of coordination complex $4(64.4 \mathrm{mg}$, 0.112 mmol). The reaction mixture was refluxed for 1 h . Evaporation of the solvent followed by recrystallization of the crude product from $\mathrm{Et}_{2} \mathrm{O}$-petroleum ether yielded $65.4 \mathrm{mg}(86 \%)$ of 6. M.p. $197-198^{\circ} \mathrm{C}$ (with dec.); $R_{\mathrm{f}} 0.38$ (98:2 EtOAc-MeOH); IR (thin film of CDCl_{3} soln, $\left.v, \mathrm{~cm}^{-1}\right): 1657 ;[\alpha]_{\varsigma 33}^{23}-46.6^{\circ},[\alpha]_{\mathrm{D}}^{23}-70.8^{\circ},[\alpha]_{546}^{23}-46.6^{\circ}$, (c 0.116, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 1.99$ and 2.00 (two $\mathrm{s}, 3 \mathrm{H}$ each, Me and Ac$), 2.82\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{s}}=\right.$ $\left.14.5, \quad{ }^{3} J_{\mathrm{PhCH}^{R}, \mathrm{NCH}}=8.6, \quad \mathrm{PhC} H^{R}\right), \quad 3.06 \quad(\mathrm{dd}, \quad 1 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{PhCH}^{s}, \mathrm{NCH}}=3.9, \quad \mathrm{PhC} H^{S}\right), 3.63(\mathrm{~m}, 1 \mathrm{H}, \quad \mathrm{NCH}), 3.80$ $\left(\mathrm{t}, 1 \mathrm{H}, J=9.5, \mathrm{OCH}^{R}\right), 4.19\left(\mathrm{t}, J=8.6, \mathrm{OCH}^{S}\right), 6.69$ [br. d, $1 \mathrm{H}, J=6.7, \mathrm{CH}(6)$ arom.], $6.83[\mathrm{br} . \mathrm{t}, 1 \mathrm{H}, J=6.9$,
$\mathrm{CH}(4)$ arom.], 6.88 [br. t, $1 \mathrm{H}, J=6.8, \mathrm{CH}(5)$ arom.], 7.19 $[\mathrm{d}, 1 \mathrm{H}, J=7.5, \mathrm{CH}(3)$ arom. $] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta, \mathrm{ppm})$: $14.3(\mathrm{MeCN}), 24.4\left(\mathrm{MeCO}_{2}\right), 40.3\left[\mathrm{PhCH}_{2}\right], 62.5(\mathrm{NCH})$, $72.7\left(\mathrm{OCH}_{2}\right), 124.0[\mathrm{CH}(5)$ arom.], $124.6[\mathrm{CH}(4)$ arom.], $127.0[\mathrm{CH}(6)$ arom.], $134.5[\mathrm{CH}(3)$ arom.], $135.4[\mathrm{C}(1)$ arom.], 137.6 [$\mathrm{PdC}(2)$ arom.], 171.7 (OCN), 180.4 (OCO). Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Pd}_{2}$: C, 45.97 ; $\mathrm{H}, 4.45$; N , 4.12. Found: C, 46.23 ; H, 4.53; N, 4.19%.
6.8. (S,S)-Di- μ-chlorobis-\{2-[2-(2-methyl)oxazolin-4-yl]-methylphenyl-C,N\} dipalladium (II) (7)
$\mathrm{LiCl}(28.20 \mathrm{mg}, 0.6652 \mathrm{mmol})$ was added to an acetone $(10.0 \mathrm{~mL})$ solution of complex $6(191.7 \mathrm{mg}, 0.2822 \mathrm{mmol})$, and the mixture was stirred at rt for 1 h . The solvent was evaporated, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and filtered through celite. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes to afford the pure $7(157.9 \mathrm{mg}$, 89%) as a yellow powder. M.p. 198-220 (dec.); $R_{\mathrm{f}} 0.45$ (1:2 benzene-EtOAc); IR (nujol mull, $v, \mathrm{~cm}^{-1}$): 1647 $(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{24}-173^{\circ},[\alpha]_{\mathrm{D}}^{24}-216^{\circ},[\alpha]_{546}^{24}-284^{\circ},(c 0.878$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.64$ (d, $\left.1 \mathrm{H}, \quad{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{S}}=14.7, \quad \mathrm{PhCH} H^{R}\right), \quad 3.72 \quad(\mathrm{dd}, \quad 1 \mathrm{H}$, ${ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{s}}=8.3, \quad{ }^{3} J_{\mathrm{OCH}^{s}, \mathrm{NCH}}=12.7, \quad \mathrm{OCH}^{S}$), 3.99 (br. dd, $1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{s}, \mathrm{NCH}}=6.5, \quad \mathrm{PhC} H^{S}$), 4.49 (br. s, 1 H , $\mathrm{NCH}), 4.60\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{OCH}^{R}, \mathrm{NCH}}=9.0, \mathrm{OCH}^{R}\right), 6.72[\mathrm{br} . \mathrm{d}$, $1 \mathrm{H}, J=6.7, \mathrm{CH}(6)$ arom.], 6.83 [m, $1 \mathrm{H}, \mathrm{CH}(4)$ arom.], 6.89 [br. t, $1 \mathrm{H}, J=6.8, \mathrm{CH}(5)$ arom.], 7.20 [br. d, 1 H , $J=7.5, \mathrm{CH}(3)$ arom.]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ, ppm): 15.4 (Me), $38.6\left(\mathrm{PhCH}_{2}\right), 59.7(\mathrm{NCH}), 73.3\left(\mathrm{OCH}_{2}\right), 124.5$ [$\mathrm{CH}(5)$ arom.], $125.5[\mathrm{CH}(4)$ arom.], $127.9[\mathrm{CH}(6)$ arom.], 134.4 [C(1) arom.], $135.1[\mathrm{CH}(3)$ arom.], 138.9 [PdC(2) arom.], $171.9(\mathrm{OCN})$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$: C, 41.80; H, 3.83; N, 4.43. Found: C, 41.74; H, 3.95; N, 4.30%.
6.9. (S)-Chloro-\{2-[2-(2-methyl)oxazolin-4-yl]-methylphenyl-C, N$\}$ (triphenylphosphine)palladium (II) (8)
$\mathrm{PPh}_{3}(131.0 \mathrm{mg}, 0.4995 \mathrm{mmol})$ was added to a stirred solution of dimer $7(157.9 \mathrm{mg}, 0.2498 \mathrm{mmol})$ in benzene $(10.0 \mathrm{~mL})$. After 12 h , the solvent was evaporated to obtain a pale-yellow solid, which was purified by trituration with petroleum ether to afford $287.0 \mathrm{mg}(99 \%)$ of the pure product. M.p. $\geqslant 140{ }^{\circ} \mathrm{C}$ (dec.); $R_{\mathrm{f}} 0.75$ (98:2 EtOAc-MeOH), 0.29 (1:2 pet. ether-EtOAc); IR (nujol mull, $v, \mathrm{~cm}^{-1}$): $1657(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{22}-64.6^{\circ},[\alpha]_{\mathrm{D}}^{22}-82.2^{\circ},[\alpha]_{546}^{22}-105.7^{\circ}$, $[\alpha]_{435}^{22}-256.2^{\circ},[\alpha]_{405}^{22}-369.8^{\circ}\left(c \quad 0.219, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (δ, ppm): 2.24 (br. d, $3 \mathrm{H},{ }^{5} J_{\mathrm{HH}}=1.0, \mathrm{Me}$), $2.68(\mathrm{~d}$, $\left.1 \mathrm{H}, \quad{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{s}}=14.1, \quad \mathrm{PhC} H^{R}\right), \quad 3.68 \quad(\mathrm{dd}, \quad 1 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{S}}=8.4,{ }^{3} J_{\mathrm{OCH}^{R}, \mathrm{NCH}}=12.0, \quad \mathrm{OCH}^{R}\right), 3.92(\mathrm{dd}$, $\left.1 \mathrm{H}, \quad{ }^{3} J_{\mathrm{PhCH}^{S}, \mathrm{NCH}}=6.6, \quad \mathrm{PhCH} H^{S}\right), \quad 4.54 \quad(\mathrm{t}, \quad 1 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{OCH}^{s}, \mathrm{NCH}}=9.2, \mathrm{OCH}^{S}\right), 4.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 6.29[\mathrm{br}$. $\mathrm{dt}, 1 \mathrm{H}, J_{\mathrm{HH}}=8.0,{ }^{5} J_{\mathrm{PH}}=1.7, \mathrm{CH}(5)$ arom.], $6.50[\mathrm{br} . \mathrm{dd}$, $1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.3,{ }^{4} J_{\mathrm{PH}}=5.4, \mathrm{CH}(6)$ arom. $], 6.70[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}(3)$ and $\mathrm{CH}(4)$ arom.], $7.28\left(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $7.38\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.56(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{CH}$ of
$\left.\mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 14.9(\mathrm{Me}), 40.6\left(\mathrm{PhCH}_{2}\right)$, $60.4(\mathrm{NCH}), 72.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.3, \mathrm{OCH}_{2}\right), 123.2[\mathrm{CH}(4)$ arom.], 125.5 [d, ${ }^{4} J_{\mathrm{CP}}=4.1, \mathrm{CH}(5)$ arom.], $127.6[\mathrm{CH}(3)$ arom.], $128.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=10.9, m-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 130.2(\mathrm{~d}$, ${ }^{4} J_{\mathrm{CP}}=2.0, p-\mathrm{CH}$ of $\left.\mathrm{PPh}_{3}\right), 131.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=50.7\right.$, ipso-C of $\left.\mathrm{PPh}_{3}\right), 134.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.5, o-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 135.7$ $\left[\mathrm{PdC}(1)\right.$ arom.], $136.6\left[\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=10.5, \mathrm{CH}(6)\right.$ arom.], 152.9 [C(2) arom.], $170.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.6, \mathrm{OCN}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ, ppm): 32.54. Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNOPPd}$: C, 60.22; H, 4.71; N, 2.42. Found: C, 60.39; H, 4.65; N, 2.43%.
6.10. (S,S)-Diacetatobis-(2-benzyl-4-tert-butyl-2oxazoline) palladium(II) (9)

An acetone solution (2.6 mL) of 2-benzyl-4-tert-butyl-2oxazoline ($215.3 \mathrm{mg}, 0.9908 \mathrm{mmol}$) was added to a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(112.5 \mathrm{mg}, 0.5011 \mathrm{mmol})$ in acetone $(1.0 \mathrm{~mL})$. The reaction mixture was stirred under N_{2} at rt for 1 h . The solvent was evaporated, and the resulting yellow residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petroleum ether to obtain $349 \mathrm{mg}(98 \%)$ of the pure product. M.p. $106-109{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.49$ (EtOAc); IR (thin film of CDCl_{3} soln, $\left.v, \mathrm{~cm}^{-1}\right): 1658$ (shoulder), 1639, $1603(\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O})$; $[\alpha]_{633}^{22}+18.4^{\circ},[\alpha]_{\mathrm{D}}^{22}+33.1^{\circ},[\alpha]_{546}^{22}+71.8^{\circ},\left(c 0.250, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 1.26(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 3.82$ $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{OCH}^{S}, \mathrm{NCH}}=10.2,{ }^{3} J_{\mathrm{OCH}^{R}}{ }^{\mathrm{NCH}}=6.8, \mathrm{NCH}\right) ; 4.19$ (dd, $1 \mathrm{H},{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{s}}=9.3, \mathrm{OCH}^{R}$), $4.23\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{OCH}^{S}\right)$; $4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{S}}=15.7, \mathrm{PhCH}\right), 5.17($ br. d, 1 H , PhCH), 7.25-7.36 (m, 5H, CH arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 23.1\left(\mathrm{MeCO}_{2}\right), 26.0\left[\mathrm{CMe}_{3}\right], 33.9\left[\mathrm{CMe}_{3}\right], 36.5$ $\left(\mathrm{PhCH}_{2}\right), 70.1\left(\mathrm{OCH}_{2}\right), 73.6(\mathrm{NCH}), 127.1(p-\mathrm{CH}$ arom.), 128.5 ($\mathrm{m}-\mathrm{CH}$ arom.), 129.4 (o-CH arom.), 134.3 (ipso-C arom.), $172.5(\mathrm{OCN}), 177.5\left(\mathrm{MeCO}_{2}\right)$.

6.11. (S,S)-Dichlorobis-(2-benzyl-4-tert-butyl-2oxazoline)palladium(II) (10)

Method A. A solution of (S)-2-Benzyl-4-tert-butyl-2oxazoline $2(50.0 \mathrm{mg}, \quad 0.230 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ ($33.5 \mathrm{mg}, 0.114 \mathrm{mmol}$) in acetone (5.0 mL) was stirred for 11 h at rt in a flask equipped with a CaCl_{2} drying tube. The solvent was evaporated and the crude product was purified by flash column chromatography, using toluene and $1: 1$ toluene-EtOAc as eluents. A yellow powder ($34.9 \mathrm{mg}(50 \%)$ was isolated as a mixture of two isomers in a $2: 1$ ratio. Method B. The pre-ligand $2(87.7 \mathrm{mg}$, 0.404 mmol) was added to a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(54.8 \mathrm{mg}, 0.204 \mathrm{mmol})$ in acetone $(1.5 \mathrm{~mL})$. The reaction mixture was stirred under N_{2} at rt for 1 h . A saturated solution of $\mathrm{LiCl}(17.6 \mathrm{mg}, 0.415 \mathrm{mmol})$ in acetone $(1.6 \mathrm{~mL})$ was added and the mixture was stirred for an additional 1 h . The solvent was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. Purification of the crude product by column chromatography, using benzene as the eluent, afforded 106 mg (87%) of $\mathbf{1 0}$ as a yellow solid. M.p. $165-167{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.40$ (benzene); IR (thin film of
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln, $\left.v, \mathrm{~cm}^{-1}\right): 1643(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{21}+173^{\circ},[\alpha]_{\mathrm{D}}^{21}$ $+227^{\circ},[\alpha]_{546}^{21}+303^{\circ},\left(c \quad 0.180, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, $\mathrm{ppm}): 1.30(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 4.09-4.63(\mathrm{~m}, 5 \mathrm{H}$, overlapping signals of $\mathrm{PhCH}_{2}, \mathrm{OCH}_{2}$ and NCH$) ; 7.26-7.48(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\delta, \mathrm{ppm}\right): 26.3\left(\mathrm{CMe}_{3}\right), 34.0$ $\left(\mathrm{CMe}_{3}\right), 36.4\left(\mathrm{PhCH}_{2}\right), 70.4\left(\mathrm{OCH}_{2}\right), 74.1(\mathrm{NCH}), 127.4$ ($p-\mathrm{CH}$ arom.), 128.7 ($m-\mathrm{CH}$ arom.), 129.3 ($o-\mathrm{CH}$ arom.), 133.5 (ipso-C arom.), 171.4 (OCN). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$: C, $54.96 ; \mathrm{H}, 6.26 ; \mathrm{N}, 4.58$. Found: C, 55.02 ; H, 6.27; N, 4.50\%.

6.12. (S,S)-Di- μ-chlorobis-[2-(4-tert-butyl-2-oxazolin-2-yl)methylphenyl-C,NJdipalladium(II) (11)

Method A. A mixture of (S)-2-benzyl-4-tert-butyl-2oxazoline $2(37.8 \mathrm{mg}, \quad 0.174 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(39.1 \mathrm{mg}, 0.174 \mathrm{mmol})$ in acetonitrile $(3.0 \mathrm{~mL})$ was heated in an oil bath at $76{ }^{\circ} \mathrm{C}$ (bath temp.) for 20 h . The solvent was evaporated and the residue was dissolved in acetone $(4.5 \mathrm{~mL}) . \mathrm{LiCl}$ was added and the mixture was stirred at rt for 25 h . Evaporation of the solvent, followed by purification of the crude product by dry column flash chromatography, using $1: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ as the eluent, afforded $37.5 \mathrm{mg}(60 \%)$ of a yellow powder as the pure product. Method B. The complex was synthesized from (S, S)-diacetatobis-(2-benzyl-4-tert-butyl-2-oxazoline)palladium(II) $9 \quad(326.5 \mathrm{mg}, \quad 0.4954 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($111.8 \mathrm{mg}, 0.4978 \mathrm{mmol}$), followed by ligand metathesis with LiCl according to the procedure described for compound 7. The pure complex ($304.6 \mathrm{mg}, 86 \%$) was obtained after column chromatography with benzene and $20: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc as eluents. M.p. $\geqslant 143$ (dec.); $R_{\mathrm{f}} 0.65$ (9:1 toluene-EtOAc), 0.43 (49:1 benzene-EtOAc); IR (thin film of CDCl_{3} soln, $\left.v, \mathrm{~cm}^{-1}\right): 1658(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{22}+38.3^{\circ},[\alpha]_{\mathrm{D}}^{22}$ $+44.5^{\circ},[\alpha]_{546}^{22}+54.4^{\circ},[\alpha]_{435}^{22}+81.2^{\circ}\left(c 0.260, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\delta, \quad \mathrm{ppm}): 0.99(\mathrm{~s}, ~ 9 \mathrm{H}, t-\mathrm{Bu}), 3.45(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{PhCH}^{R}, \mathrm{PhCH}^{s}}=17.7, \mathrm{PhCH}^{A}\right), 4.08\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{OCH}^{S}, \mathrm{NCH}}=\right.$ $\left.9.7,{ }^{3} J_{\mathrm{OCH}^{R}}=4.9, \mathrm{NCH}\right), 4.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}^{\mathrm{B}}\right), 4.39(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{OCH}^{S}\right), 4.46\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{S}}=9.2, \mathrm{OCH}^{R}\right)$, $6.81[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(3)$ arom.], $6.89[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}(5)$ and $\mathrm{CH}(6)$ arom.], 7.30 [m, $1 \mathrm{H}, \mathrm{CH}(4)$ arom.]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta, \mathrm{ppm}): 25.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.0\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 37.3$ [PhCH_{2}], $72.3\left(\mathrm{OCH}_{2}\right), 72.4(\mathrm{NCH}), 124.2[\mathrm{CH}(5)$ arom.], $125.4[\mathrm{CH}(4)$ arom.], $126.1[\mathrm{CH}(6)$ arom.], $133.7[\mathrm{C}(1)$ arom.], $136.6[\mathrm{CH}(3)$ arom.], $138.5[\mathrm{PdC}(2)$ arom.], 171.0 (OCN).
6.13. (S)-Chloro-[2-(4-tert-butyl-2-oxazolin-2-yl)-methylphenyl-C,N](triphenylphosphane)palladium(II) (12)

A solution of dimer $11(55.5 \mathrm{mg}, 0.0775 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(42.8 \mathrm{mg}, 0.163 \mathrm{mmol})$ in benzene $(7.0 \mathrm{~mL})$ was stirred under N_{2} at rt for 28.5 h . The solvent was evaporated and the pale-yellow residue was triturated with hexanes, followed by slow crystallization from benzene-pentane to obtain 12 ($81.6 \mathrm{mg}, 85 \%$) as pale-yellow crystals. M.p.
$183-185^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36$ (17:3 benzene-EtOAc); IR (thin film of CDCl_{3} soln, $\left.v, \mathrm{~cm}^{-1}\right): 1658(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{18}+19.1^{\circ},[\alpha]_{\mathrm{D}}^{18}$ $+22.8^{\circ}, \quad[\alpha]_{546}^{18}+28.3^{\circ}, \quad[\alpha]_{435}^{18}+53.6^{\circ}, \quad[\alpha]_{405}^{18}+68.1^{\circ}(c$ $\left.0.0640, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 0.82(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$, $3.42\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=16.1, \mathrm{PhCH}^{\mathrm{A}}\right), 4.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}^{\mathrm{B}}\right)$, $4.47\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{s}}=9.0,{ }^{3} J_{\mathrm{OCH}^{R}, \mathrm{NCH}}=5.0, \mathrm{OCH}^{R}\right)$, $4.53\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{OCH}_{, \mathrm{NCH}}^{S}}=9.6, \mathrm{OCH}^{S}\right), 4.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{NCH})$, $6.24[\mathrm{t}, 1 \mathrm{H}, J=7.3, \mathrm{CH}(5)$ arom. $], 6.52[\mathrm{t}, 1 \mathrm{H}, J=6.7$, $\mathrm{CH}(6)$ arom.], $6.62[\mathrm{t}, 1 \mathrm{H}, J=7.3, \mathrm{CH}(4)$ arom.], 6.81 [d, $1 \mathrm{H}, J=7.2, \mathrm{CH}(3)$ arom.], $7.28\left(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $7.36\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.58(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{CH}$ of $\left.\mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}(\delta, \mathrm{ppm}): 25.5 \quad\left[\mathrm{CMe}_{3}\right], 34.1$ $\left[\mathrm{CMe}_{3}\right], 38.7\left[\mathrm{PhCH} \mathrm{H}_{2}\right], 70.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.3, \mathrm{NCH}\right), 72.8(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{CP}}=1.8, \quad \mathrm{OCH}_{2}\right), \quad 122.7 \quad[\mathrm{CH}(4)$ arom. $], \quad 125.4 \quad[\mathrm{~d}$, ${ }^{4} J_{\mathrm{CP}}=4.1, \mathrm{CH}(5)$ arom.], $126.0[\mathrm{CH}(3)$ arom.], 127.9 (d, ${ }^{3} J_{\mathrm{CP}}=10.6, m-\mathrm{CH}$ of $\left.\mathrm{PPh}_{3}\right), 130.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.1, p-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 131.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=50.5\right.$, ipso-C of $\left.\mathrm{PPh}_{3}\right), 135.0(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=11.5, o-\mathrm{CH}$ of $\left.\mathrm{PPh}_{3}\right), 136.0[\mathrm{PdC}(1)$ arom.], 138.8 $\left[\mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.1, \mathrm{CH}(6)\right.$ arom.], 151.5 [C(2) arom.], 171.6 (d, OCN); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\delta, \mathrm{ppm}\right):$ 34.41. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClNOPPd}$: $\mathrm{C}, 61.95 ; \mathrm{H}, 5.36 ; \mathrm{N}, 2.26$. Found: C, 62.21; H, 5.48; N, 2.27\%.
6.14. (S,S)-Di- μ-chlorobis-[2-(4-benzyl-2-oxazolin-2-yl)-methylphenyl-C,N]dipalladium(II) (13)

Complex 13 was synthesized using three different methods: Method A. A mixture of (S)-2,4-dibenzyl-2-oxazoline 3 $(50.8 \mathrm{mg}, \quad 0.202 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2} \quad(45.7 \mathrm{mg}$, $0.204 \mathrm{mmol})$ in acetic acid (6.0 mL) was heated in an oil bath at $80^{\circ} \mathrm{C}$ for 3.5 h , followed by ligand metathesis with $\mathrm{LiCl}(10.2 \mathrm{mg}, 0.241 \mathrm{mmol})$ in acetone $(7.0 \mathrm{~mL})$ at rt for 25 h . Complex 13 was isolated in 70% overall yield after purification by flash column chromatography, using benzene as the eluent. Method B. When a mixture of 3 $(50.8 \mathrm{mg}, \quad 0.202 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(46.6 \mathrm{mg}, 0.208$ $\mathrm{mmol})$ in acetonitrile $(5.0 \mathrm{~mL})$ was heated in an oil bath at $78^{\circ} \mathrm{C}$ for 3 h , followed by ligand metathesis with LiCl $(11.0 \mathrm{mg}, 0.260 \mathrm{mmol})$ in acetone at rt , complex $\mathbf{1 3}$ was isolated in 49% overall yield. Method C. A solution of 3 $(56.1 \mathrm{mg}, \quad 0.223 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2} \quad(51.0 \mathrm{mg}$, $0.227 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was stirred at room temperature for 24 h . The crude product was reacted with LiCl in acetone to obtain complex 13 in 39% yield. M.p. $134-137^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.51$ ($24: 1$ benzene-EtOAc); IR (thin film of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln, $\left.v, \mathrm{~cm}^{-1}\right): 1664(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{30}+57.4^{\circ}$, $[\alpha]_{\mathrm{D}}^{30}+61.9^{\circ},[\alpha]_{546}^{30}+85.4^{\circ},[\alpha]_{435}^{30}+243.2^{\circ}\left(c 0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \quad \mathrm{ppm}): \quad 2.86\left(\mathrm{dd}, \quad{ }^{2} J_{\mathrm{PhCH}^{\mathrm{A}}, \mathrm{PhCH}^{\mathrm{B}}}=13.7\right.$, $\left.{ }^{3} J_{\mathrm{PhCH}^{\mathrm{A}}, \mathrm{NCH}} \approx 8.9, \mathrm{PhC} H^{\mathrm{A}}\right), 3.41\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{\mathrm{C}}, \mathrm{PhCH}^{\mathrm{D}}} \approx\right.$ $\left.17.6, J \approx 9.9, \mathrm{PhCH}^{\mathrm{C}}\right), 3.51\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{\mathrm{B}}, \mathrm{NCH}} \approx 3.5\right.$, $\left.\mathrm{PhC} H^{\mathrm{B}}\right), 4.20\left(\mathrm{br} . \mathrm{t}, 1 \mathrm{H}, \mathrm{PhC} H^{\mathrm{D}}\right), 4.29(\mathrm{dd}, 1 \mathrm{H}, J \approx 17.0$, $J \approx 9.5, \mathrm{OCH}), 4.42(\mathrm{dt}, 1 \mathrm{H}, \mathrm{OCH}), 4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 6.79-7.49 [m, 9H, CH arom.]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ, ppm): $37.0\left(\mathrm{PhCH}_{2}\right), 40.5\left(\mathrm{PhCH}_{2}\right), 65.3(\mathrm{NCH}), 74.3\left(\mathrm{OCH}_{2}\right)$, $124.6[\mathrm{CH}(4)$ arom.], $125.6[\mathrm{CH}(5)$ arom.], $126.6[\mathrm{CH}(3)$ arom.], $126.9(p-\mathrm{CH}$ of Ph$), 128.5(m-\mathrm{CH}$ of Ph$), 129.6$
(o-CH of Ph), 133.7 (ipso- C of Ph), 135.5 [$\mathrm{PdC}(1)$ arom.], $137.1[\mathrm{CH}(6)$ arom.], $138.0[\mathrm{C}(2)$ arom.], $171.0(\mathrm{OCN})$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$: C, $52.06 ; \mathrm{H}, 4.11$; N, 3.57. Found: C, 51.95 ; H, 4.10 ; N, 3.57%.

6.15. (S)-Chloro-[2-(4-benzyl-2-oxazolin-2-yl)-methylphenyl-C,N](triphenylphosphane)palladium(II) (14)

A solution of the μ - Cl dimer $13(84.0 \mathrm{mg}, 0.107 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(60.9 \mathrm{mg}, 0.232 \mathrm{mmol})$ in benzene $(10.0 \mathrm{~mL})$ was stirred at rt for 25 h . The solvent was evaporated and the pale-yellow residue was triturated with pentane to obtain 14 ($122.4 \mathrm{mg}, 87 \%$) as a cream-white solid. M.p. 204-207 ${ }^{\circ} \mathrm{C}$ (dec.); $R_{\mathrm{f}} 0.55$ ($2: 1$ benzene-EtOAc); IR (nujol, $v, \mathrm{~cm}^{-1}$): $1651(\mathrm{C}=\mathrm{N}) ;[\alpha]_{633}^{27}+50.9^{\circ},[\alpha]_{\mathrm{p}}^{27}+57.8^{\circ}$, $[\alpha]_{546}^{27}+71.6^{\circ},[\alpha]_{435}^{27}+159.8^{\circ}\left(c 0.212, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathrm{P}} \mathrm{H} \mathrm{NMR}$ $(\delta, \mathrm{ppm}): 2.80\left(\mathrm{dd},{ }^{2} J_{\mathrm{PhCH}^{\mathrm{A}}, \mathrm{PhCH}^{\mathrm{B}}}=13.6,{ }^{3} J_{\mathrm{PhCH}^{\mathrm{A}}, \mathrm{NCH}^{\mathrm{B}}}=\right.$ 7.5, $\left.\mathrm{PhC} H^{\mathrm{A}}\right), 3.20\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PhCH}^{\mathrm{B}}, \mathrm{NCH}}=4.4, \mathrm{PhCH}^{\mathrm{B}}\right)$, $3.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{PhCH}^{\mathrm{C}}, \mathrm{PhCH}^{\mathrm{D}}}=16.3, \mathrm{PhC} H^{\mathrm{C}}\right), 4.14(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{PhCH} H^{\mathrm{D}}\right), 4.26\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{OCH}^{R}, \mathrm{OCH}^{S}}=8.5,{ }^{3} J_{\mathrm{OCH}^{R}, \mathrm{NCH}}=\right.$ $\left.7.5, \mathrm{OCH}^{R}\right), 4.50\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{OCH}^{S}, \mathrm{NCH}}=9.4, \mathrm{OCH}^{S}\right), 5.36$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}), 6.32[\mathrm{t}, 1 \mathrm{H}, J=7.3, \mathrm{CH}(5)$ arom.], 6.69 $[\mathrm{t}, 2 \mathrm{H}, J=7.2, \mathrm{CH}(4$ and 6$)$ arom.], $6.79[\mathrm{~d}, 1 \mathrm{H}, J=7.0$, $\mathrm{CH}(3)$ arom.], $6.99(\mathrm{~d}, 2 \mathrm{H}, J=7.1, o-\mathrm{CH}$ arom.), $7.03(\mathrm{t}$, $2 \mathrm{H}, J \approx 7.5, m-\mathrm{CH}$ arom.), $7.10(\mathrm{t}, 1 \mathrm{H}, J \approx 7.2, p-\mathrm{CH}$ arom.), $7.30\left(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.37(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}$ of $\left.\mathrm{PPh}_{3}\right), 7.60\left(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta, \mathrm{ppm}): 38.4\left[\mathrm{PhCH}_{2}\right], 40.1\left(\mathrm{PhCH}_{2}\right), 63.1(\mathrm{NCH}), 74.5$ $\left(\mathrm{OCH}_{2}\right), 123.1\left[\mathrm{CH}(4)\right.$ arom.], $125.5\left[\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=4.8, \mathrm{CH}(5)\right.$ arom.], $126.4[\mathrm{CH}(3)$ arom.], $126.5(p-\mathrm{CH}$ of Ph$), 128.0$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=10.7, m-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right), 128.2(m-\mathrm{CH}$ of Ph$)$, $129.9(o-\mathrm{CH}$ of Ph$), 130.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.4, p-\mathrm{CH}\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $131.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=50.1\right.$, ipso-C of $\left.\mathrm{PPh}_{3}\right), 135.0(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=11.3, o-\mathrm{CH}$ of PPh_{3}), 135.5 (ipso-C of Ph), 136.0 $\left[\mathrm{PdC}(1)\right.$ arom.], 139.4 [d, ${ }^{3} J_{\mathrm{CP}}=12.1, \mathrm{CH}(6)$ arom.], 151.0 [C(2) arom.], 171.6 (OCN); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ, ppm): 33.52. Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{ClNOPPd}: \mathrm{C}, 64.23$; H, 4.77; N, 2.14. Found: C, 64.17; H, 4.88; N, 2.13\%.

6.16. X-ray structure determinations for 6 and 14

X-ray quality crystals of $\mathbf{6}$ and $\mathbf{1 4}$ were obtained from benzene-petroleum ether and benzene-pentane, respectively. A crystal (approximate dimensions $0.15 \times 0.05 \times$ $0.02 \mathrm{~mm}^{3}$ for 6 and $0.50 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$ for 14) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a CCD area detector diffractometer for data collection at 173(2) K [91]. A preliminary set of cell constants was calculated from reflections harvested from three sets of 20 frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced initial orientation matrices determined from 30 and 27 reflections, respectively. The data collection was carried out using Mo K α radiation (graphite monochromator) with a frame time of 60 s and a detector distance of 4.9 cm . A randomly oriented region of recipro-
cal space was surveyed to the extent of one sphere and to a resolution of $0.84 \AA$. Four major sections of frames were collected with 0.30° steps in ω at four different ϕ settings and a detector position of -28° in 2θ. The intensity data were corrected for absorption and decay (sADABS) [92]. Final cell constants were calculated from 2154 and 2552 strong reflections, respectively, from the actual data collection after integration (SAINT) [93].

The structures were solved and refined using Bruker shelxtl [94]. The space groups $C 2$ and $P 2_{1} 2_{1} 2_{1}$ were determined for 6 and 14, respectively, based on systematic absences and intensity statistics. A direct-methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares/difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to $R_{1}=0.0409$ and 0.0287 and $w R_{2}=0.1055$ and 0.0641 (F^{2}, all data), respectively.

7. Supplementary material

CCDC 651903 and 651904 contain the supplementary crystallographic data for 6 and 14. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/ cif.

Acknowledgements

Financial support has been received from ND EPSCoR through NSF Grant No. EPS-0447679. R.Y.M. thanks ND EPSCoR for providing the Doctoral Fellowship. The authors would like to acknowledge Victor G. Young, Jr., Benjamin E. Kuchera and the X-ray Crystallographic Laboratory in the Department of Chemistry of the University of Minnesota for the X-ray crystallographic analyses. I.P.S. would like to thank Professor Valery V. Dunina of M.V. Lomonosov Moscow State University for support and encouragement.

References

[1] A.C. Cope, R.W. Siekman, J. Am. Chem. Soc. 87 (1965) 3272.
[2] J. Dupont, C.S. Consorti, J. Spencer, J. Chem. Rev. 105 (2005) 2527.
[3] N.D. Cameron, M. Kilner, J. Chem. Soc., Chem. Commun. (1975) 687.
[4] K. Hiraki, Y. Fuchita, K. Takechi, Inorg. Chem. 20 (1981) 4316.
[5] A.D. Ryabov, G.M. Kazankov, J. Organomet. Chem. 268 (1984) 85.
[6] G. Minghetti, M.A. Cinellu, G. Chelucci, S. Gladiali, F. Demartin, M. Manassero, J. Organomet. Chem. 307 (1986) 107.
[7] Y. Fuchita, K. Hiraki, Y. Kage, Bull. Chem. Soc. Jpn. 55 (1982) 955.
[8] I. Aiello, A. Crispini, M. Ghedini, M. La Deda, F. Barigelletti, Inorg. Chim. Acta 308 (2000) 121.
[9] M. Nonoyama, Trans. Met. Chem. 7 (1982) 281.
[10] D.J. de Geest, B.J. O'Keefe, P.J. Steel, J. Organomet. Chem. 579 (1999) 97.
[11] B.J. O'Keefe, P.J. Steel, Inorg. Chem. Commun. 2 (1999) 10.
[12] M.S. Yoon, D. Ryu, J. Kim, K.H. Ahn, Organometallics 25 (2006) 2409.
[13] Y. Fuchita, K. Hiraki, T. Uchiyama, J. Chem. Soc., Dalton Trans. (1983) 897.
[14] G.R. Newkome, W.E. Puckett, V.K. Gupta, F.R. Fronczek, Organometallics 2 (1983) 1247.
[15] S. Stoccoro, B. Soro, G. Minghetti, A. Zucca, M.A. Cinellu, J. Organomet. Chem. 679 (2003) 1.
[16] P.L. Alsters, P.F. Engel, M.P. Hogerheide, M. Copijn, A.L. Spek, G. van Koten, Organometallics 12 (1993) 1831.
[17] J. Vicente, I. Saura-Llamas, J. Cuadrado, Organometallics 22 (2003) 5513.
[18] J. Vicente, I. Saura-Llamas, M.G. Palin, P.G. Jones, M.C.R. de Arellano, Organometallics 16 (1997) 826.
[19] J. Dupont, M. Pfeffer, M.A. Rotteveel, A. de Cian, J. Fischer, Organometallics 8 (1989) 1116.
[20] M. Hugentobler, A.J. Klaus, H. Mettler, P. Rys, G. Wehrle, Helv. Chim. Acta 65 (1982) 1202.
[21] R.M. Ceder, J. Granell, J. Sales, J. Organomet. Chem. 307 (1986) C44.
[22] J. Albert, R. Bosque, J. Granell, R. Tavera, J. Organomet. Chem. 595 (2000) 54.
[23] R. Bosque, J. Granell, J. Sales, M. Font-Bardia, X. Solans, J. Organomet. Chem. 453 (1993) 147.
[24] J. Albert, J. Granell, J. Sales, Organometallics 5 (1986) 2567.
[25] J. Albert, R.M. Ceder, M. Gomez, J. Granell, J. Sales, Organometallics 11 (1992) 1536.
[26] R.M. Ceder, M. Gómez, J. Sales, J. Organomet. Chem. 361 (1989) 391.
[27] J. Barro, J. Granell, D. Sainz, J. Sales, M. Font-Bardía, X. Solans, J. Organomet. Chem. 456 (1993) 147.
[28] G. De Munno, M. Ghedini, F. Neve, Inorg. Chim. Acta 239 (1995) 155.
[29] M. Gómez, J. Granell, M. Martinez, J. Chem. Soc., Dalton Trans. (1998) 37.
[30] C.-L. Chen, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Organometallics 24 (2005) 1075.
[31] J. Albert, J. Granell, A. Luque, M. Font-Bardía, X. Solans, J. Organomet. Chem. 545-546 (1997) 131.
[32] M. Benito, C. López, X. Morvan, Polyhedron 18 (1999) 2583.
[33] J. Albert, M. Gomez, J. Granell, J. Sales, Organometallics 9 (1990) 1405.
[34] J. Albert, M. Cadena, A. González, J. Granell, X. Solans, M. FontBardia, J. Organomet. Chem. 663 (2002) 277.
[35] S. Tollari, S. Cenini, C. Tunice, G. Palmisano, Inorg. Chim. Acta 272 (1998) 18.
[36] A.R. Cowley, R.I. Cooper, E. Capito, J.M. Brown, A. Ricci, Acta Cryst. E61 (2005) m582.
[37] K. Yuan, T.K. Zhang, X.L. Hou, J. Org. Chem. 70 (2005) 6085.
[38] C. Bolm, K. Wenz, G. Raabe, J. Organomet. Chem. 662 (2002) 23.
[39] N. Schneider, V. César, S. Bellemin-Laponnaz, L.H. Gade, Organometallics 24 (2005) 4886.
[40] D. Zim, S.L. Buchwald, Org. Lett. 5 (2003) 2413.
[41] R.A. Holton, R.V. Nelson, J. Organomet. Chem. 201 (1980) C35.
[42] I.P. Beletskaya, A.N. Kashin, N.B. Karlstedt, A.V. Mitin, A.V. Cheprakov, G.M. Kazankov, J. Organomet. Chem. 622 (2001) 89.
[43] A. Schnyder, A.F. Indolese, M. Studer, H.-U. Blaser, Angew. Chem. Int. Ed. 41 (2002) 3668.
[44] M.S. Viciu, R.A. Kelly III, E.D. Stevens, F. Naud, M. Studer, S.P. Nolan, Org. Lett. 5 (2003) 1479.
[45] O. Navarro, R.A. Kelly III, S.P. Nolan, J. Am. Chem. Soc. 125 (2003) 16194.
[46] J. Vicente, I. Saura-Llamas, D. Bautista, Organometallics 24 (2005) 6001.
[47] M. Gómez, G. Muller, M. Rocamora, Coord. Chem. Rev. 193-195 (1999) 769.
[48] O.N. Gorunova, K.J. Keuseman, B.M. Goebel, N.A. Kataeva, A.V. Churakov, L.G. Kuz'mina, V.V. Dunina, I.P. Smoliakova, J. Organomet. Chem. 689 (2004) 2382.
[49] K.J. Keuseman, I.P. Smoliakova, V.V. Dunina, Organometallics 24 (2005) 4159.
[50] R.Y. Mawo, S. Mustakim, V.G. Young Jr., M.R. Hoffmann, I.P. Smoliakova, Organometallics 26 (2007) 1801.
[51] T. Izumi, H. Watabe, A. Kasahara, Bull. Chem. Soc. Jpn. 54 (1981) 1711.
[52] C.J. Dehen, K.J. Keuseman, I.P. Smoliakova, J. Undergrad. Chem. Res. 2 (2003) 91.
[53] D.L. Peterson, K.J. Keuseman, N.A. Kataeva, L.G. Kuz'mina, J.A.K. Howard, V.V. Dunina, I.P. Smoliakova, J. Organomet. Chem. 654 (2002) 66.
[54] I.P. Smoliakova, K.J. Keuseman, D.C. Haagenson, D.M. Wellmann, P.B. Colligan, N.A. Kataeva, A.V. Churakov, L.G. Kuz'mina, V.V. Dunina, J. Organomet. Chem. 603 (2000) 86.
[55] G. Balavoine, J.C. Clinet, P. Zerbib, K. Boubekeur, J. Organomet. Chem. 389 (1990) 259.
[56] G. Balavoine, J.C. Clinet, J. Organomet. Chem. 390 (1990) C84.
[57] J.-M. Valk, F. Maassarani, P. van der Sluis, A.L. Spek, J. Boersma, G. van Koten, Organometallics 13 (1994) 2320.
[58] A. El Hatimi, M. Gomez, S. Jansat, G. Muller, M. Font-Bardia, X. Solans, J. Chem. Soc., Dalton Trans. (1998) 4229.
[59] M. Ohff, A. Ohff, D. Milstein, Chem. Commun. (1999) 357.
[60] A.J. Davenport, D.L. Davies, J. Fawcett, D.R. Russell, J. Chem. Soc., Dalton Trans. (2002) 3260.
[61] M. Kim, Q. Liu, F.P. Gabbaie, Organometallics 23 (2004) 5560.
[62] R. Giri, X. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 44 (2005) 2112.
[63] S. Gosiewska, M.H. in't Veld, J.J.M. de Pater, P.C.A. Bruijnincx, M. Lutz, A.L. Spek, G. van Koten, R.J.M. Klein Gebbink, Tetrahedron: Asymmetry 17 (2006) 674.
[64] Y. Motoyama, N. Makihara, Y. Mikami, K. Aoki, H. Nishiyama, Chem. Lett. (1997) 951.
[65] M.A. Stark, C.J. Richards, Tetrahedron Lett. 38 (1997) 5881.
[66] M.A. Stark, G. Jones, C.J. Richards, Organometallics 19 (2000) 1282.
[67] Y. Motoyama, H. Kawakami, K. Shimozono, K. Aoki, H. Nishiyama, Organometallics 21 (2002) 3408.
[68] J.S. Fossey, C.J. Richards, Tetrahedron Lett. 44 (2003) 8773.
[69] J.S. Fossey, C.J. Richards, Organometallics 23 (2004) 367.
[70] Y. Motoyama, K. Shimozono, H. Nishiyama, Inorg. Chim. Acta 359 (2006) 1725.
[71] L.E. Overman, C.E. Owen, M.M. Pavan, C.J. Richards, Org. Lett. 5 (2003) 1809.
[72] A.M. Stevens, C.J. Richards, Organometallics 18 (1999) 1346.
[73] Y. Donde, L.E. Overman, J. Am. Chem. Soc. 121 (1999) 2933.
[74] L.E. Overman, T.P. Remarchuk, J. Am. Chem. Soc. 124 (2002) 12.
[75] C.E. Anderson, L.E. Overman, J. Am. Chem. Soc. 125 (2003) 12412.
[76] R.S. Prasad, C.E. Anderson, C.J. Richards, L.E. Overman, Organometallics 24 (2005).
[77] C.E. Anderson, Y. Donde, C.J. Douglas, L.E. Overman, J. Org. Chem. 70 (2005) 648.
[78] S.F. Kirsch, L.E. Overman, J. Org. Chem. 70 (2005) 2859.
[79] S.F. Kirsch, L.E. Overman, M.P. Watson, J. Org. Chem. 69 (2004) 8101.
[80] A. Moyano, M. Rosol, R.M. Moreno, C. Lopez, M.A. Maestro, Angew. Chem., Int. Ed. Engl. 44 (2005) 1865.
[81] A.I. Meyers, M. Shipman, J. Org. Chem. 56 (1991) 7098.
[82] M. Gerisch, J.P. Krumper, R.G. Bergman, T.D. Tilley, Organometallics 22 (2003) 47.
[83] V.V. Dunina, O.A. Zalevskaya, V.M. Potapov, Russ. Chem. Rev. 57 (1988) 434.
[84] A.K. Yatsimirskii, Russ. J. Inorg. Chem. 24 (1979) 1505.
[85] A. Navarro-Vázquez, J.C. Cobas, F.J. Sardina, J. Casanueva, E. D́ıez, J. Chem. Inf. Comput. Sci. 44 (2004) 1680.
[86] C.M. Hartshorn, P.J. Steel, Organometallics 17 (1998) 3487.
[87] K. Kamata, I. Agata, A.I. Meyers, J. Org. Chem. 63 (1998) 3113.
[88] P. Lafargue, P. Guenot, J.-P. Lellouche, Heterocycles 41 (1995) 947.
[89] G.S. Bates, M.A. Varelas, Can. J. Chem. 58 (1980) 2562.
[90] S. Shibata, H. Matsushita, H. Kaneko, M. Noguchi, M. Saburi, S. Yoshikawa, Bull. Chem. Soc. Jpn. 55 (1982) 3546.
[91] smart V5.054, Bruker Analytical X-ray Systems, Madison, WI, 2001. [92] R. Blessing, Acta Cryst. A 51 (1995) 33.
[93] saint+ V6.45, Bruker Analytical X-ray Systems, Madison, WI, 2003.
[94] shelxtl V6.14, Bruker Analytical X-ray Systems, Madison, WI, 2000.

[^0]: * Corresponding author. Tel.: +1 701777 3942; fax: +1 7017772331.

 E-mail address: ismoliakova@chem.und.edu (I.P. Smoliakova).

